
Evaluation guide

for C-RUN
Version 20170428

Contents

•What’s in this guide?

•Arithmetic checking

•Bounds checking

•Bounds checking and libraries

•Using your own reporting

•Heap checking

2

What’s in this guide?

This guide is intended as a help in evaluating the runtime analysis product C-

RUN that is available as an add-on to IAR Embedded Workbench for ARM and

for Renesas RX.

The guide contains general guidelines on how to set up C-RUN in an evaluation

context and things to consider when going forward with a more thorough

evaluation.

What you need:

To follow this guide you need for one of the following:

• IAR Embedded Workbench for ARM, version 7.30 or later (Standard, Cortex-M

or time-limited evaluation edition)

• IAR Embedded Workbench for RX, version 3.10 of later (Standard or time-

limited evaluation edition)

Note: KickStart (size-limited evaluation) and Baseline editions of IAR Embedded Workbench do

not work with C-RUN.

C-RUN licensing considerations

You can evaluate C-RUN in code size limited mode without taking any special

action. This mode is mainly for evaluating the C-RUN technology on smaller

pieces of code and to explore the integration in to IAR Embedded Workbench.

The size-limited mode is not intended for use in a production environment; please

get in contact with your IAR Systems representative for access to a non-limited

evaluation license.

How to proceed?

A number of example projects that demonstrate the various features of the C-

RUN runtime checking technology are available together with this guide. Each

example can be treated as a lab exercise by following the step-by-step

instructions, or they can be used as reference and inspiration for experimentation.

3

Arithmetic checking

The first example takes a look at the most straightforward functionality in C-RUN,

the arithmetic checks. These checks include integer overflow and conversion

errors, shift errors and unhandled switch cases. To run the example, follow the

steps below.

1. Start IAR Embedded Workbench, open the workspace C-RUN.eww and

choose the Arithmetic project.

2. Read the comment at the top of the example program in Arithmetic.c

3. Make sure that all the C-RUN arithmetic checks are enabled, see the

screenshot below. Note how checks for unsigned overflow, explicit casts and

unsigned shift overflow can be turned off.

4. Build and run the program in C-SPY.

(continued on next page)

4

Arithmetic checking

5. The execution will stop, highlighting the following line of code:

The highlighted statement has triggered a runtime error and the exact part of

the statement that triggered the error is further highlighted. A new window

will also open, displaying the cause of the error and a call stack trace.

The error and the call stack are clickable for navigation to the corresponding

source locations.

6. Continue execution and examine each reported error.

7. Disable the options for unsigned overflow, explicit casts and unsigned shift

overflow and build and re-run the program. Notice that the number of

reported issues is lower.

It is in many situations convenient and efficient to rely on e.g. the overflow

behavior for unsigned integers, so the checks can easily be turned off.

8. Default is for execution to stop for each error. This can be changed by

selecting another choice in the Default action field. You can for example try

the Log alternative.

9. Messages can be filtered, in case there are certain messages or message

types that you do not want to see. See the section Creating rules for

messages in the C-SPY Debugging Guide. Right-clicking on an error

message in the C-RUN messages window brings up a menu with choices for

filtering.

Note: C-RUN windows can be opened via menu View>C-RUN.

5

Bounds checking

The second example takes a look at the bounds checking. To run the example,

follow the steps below.

1. Choose the Boundschecking project.

2. Check that bounds checking is not enabled, either by deselecting the

Enable check box, or the Enable bounds checking check box. Build and

run the program in C-SPY. Note that there are no reported error of any

kind from the execution although if inspected it seems that some of the

pointer accesses might be erroneous.

3. Enable the bounds checking option and build and run again. If Stop is the

default action for C-RUN messages, the execution will stop and show the

following information (go to next page):

6

Bounds checking

4. Notice how the out-of-bounds access *(ap+2) is highlighted, but the

execution is stopped already at the first printf() statement. This is because

the compiler can determine that the pointer values used in all the printf()

statements are related and can be tested against the bounds in one go.

5. Let the execution continue. It will stop at the last statement of the program,

indicating that the assignment is done out-of-bounds. From a bounds

checking perspective dynamically allocated memory is no different from local

pointers, static buffers or buffers on the stack.

6. In the option dialog for runtime checking there is a field for Number of

Entries. Pointers that can be accessed trough other pointers need to have

information stored in a table in memory. This field lets you decide the number

of slots in the table. If you leave the field blank you do not give a size and the

table will be huge (4k slots!). The number of slots you need is often fairly low,

so you can experiment with lowering the number. In case the number is too

low you will get an error message in runtime when there are no available

slots.

7. Set the Number of entries field to one and build and run the program.

8. In this example there is only one pointer that needs to be kept in the table, so

one slot is enough. 7

Bounds checking and

libraries
As we saw in the previous Bounds checking example, when all pointer-

manipulating code in a project is written in C/C++ and all code is compiled within

the project, bounds checking is very straightforward – just enable it and build and

run. However, if some of the code that manipulates pointers is for example

residing in a pre-built library or written in assembly language and the

library/assembly code accepts or passes pointers to your code the situation is a

little bit more complex.

In this example we will look at how to deal with such a situation. The example

program is very similar to the one used in example 2, but we have broken out the

IntMax.c file and put in its own library project to illustrate how to deal with pointers

and pointer arguments that pass through interfaces between code that is bounds

checked and code that is not.

1. Choose the Boundschecking2 project. This project is very similar to the

previous bound checking project but this project has a prebuilt maxlib library

included instead of the IntMax.c file. The file Boundschecking_2.c is very

similar to Boundschecking.c in the previous example, but there are a lot

more comments and the code doing a malloc and out-of-bounds access at

the end is not included.

2. As part of the main project, there is a file readme.txt that explains the setup

in the project and how bounds checking can be utilized also for code over

which you have no control.

Before proceeding to step 3, it is highly advised to read this file. But skip the

part about ReportCheckFailedStdout.c, at least for now; we will get back to it

in the next example.

(continued on next page)

8

Bounds checking and

libraries

3. Make sure that the DoNotCheckPointersFromNonInstrumentedCode build

configuration is selected for the main project and build and run the code in C-

SPY. You should get no reported C-RUN errors and no other indications that

something is wrong.

4. Close C-SPY and take a look at the options page for runtime checking. Then

change build configuration to CheckPointersFromNonInstrumentedCode and

build and run the code again.

5. This time you should se one C-RUN message for the third printf() statement.

Compare the use of __as_make_bounds() for the pointer ap to how the

bounds are set for the pointer used in the next printf() statement. In this

configuration the options for checking pointer from non-checked code and

memory are set. We have also defined a project specific symbol to control

the use of __as_make_bounds().

6. Comment out one of the calls to __as_make_bounds() and build and run

again. Did it change the number of C-RUN messages?

Read the section Compiler and linker reference for C-RUN in the C-SPY

debugging guide for more information.

9

Using your own

reporting
Sometimes it is not possible to execute an application in C-SPY. This might be

due to the need for electrical insulation, the need to run the device in its real

operating environment without access to debug ports etc. In such cases the built-

in reporting of C-RUN messages can be tailored to suit your needs. The final

output of the messages can be overridden to store them on disk, output them on

a serial port or store them by any means available. The project from the previous

example is prepared to show how the reporting can be changed to accommodate.

1. Choose the project from the previous example and make sure that the

selected build configuration is CheckPointersFromNonInstrumentedCode.

Right-click on the file ReportCheckFailedStdout.c in the project browser

and select Options…

Make sure that the file is not excluded from build and that the bounds-

checking options look like below:

(continued on next page)

10

Using your own

reporting
2. Re-open the options dialog on project level and in the Linker category

make sure that the Use command line options check box on the Extra

options tab is checked. There is already an extra command line option

filled in to replace the standard reporting module with the file in the project.

3. Build and run the program in C-SPY. Notice how the error in this case

comes out on stdout mixed with the other output from the program. You

can feed all the output into cspybat, the batch processing debugger utility,

and get a cleartext representation with basically the same content as

what’s shown in the C-RUN message window.

Read more about how to use cspybat for message filtering in the C-SPY

debugging guide.

4. Look inside ReportCheckFailedStdout.c. There is mainly formatting of

hexadecimal numbers going on. The actual output to stdout can be

replaced with any output method.

11

Heap checking

In applications using dynamically allocated memory it can happen that the

application uses already freed memory, fail to de-allocate not needed anymore or

simply writes outside allocated memory. A special debug heap and associated

checker functions can be used to track down. Heap checking is based on the idea

that each memory block is expanded with bookkeeping information and a buffer

area, so that the blocks as seen by the application are not located side by side.

The various checker functions examine the bookkeeping information and the

buffer areas and can report violations of correct heap usage.

Note 1: The debug heap increases the likelihood to find heap usage errors, but it’s not

failsafe.

Note 2: Due to different performance and overhead characteristics for heap checking

and bounds checking, the two methods can complement each other in tracking down

dynamic memory usage errors, but it’s not necessarily a good idea to enable them at the

same time.

1. Choose the Heap project and make sure that Use checked heap is

enabled like in the picture above. Build and run the program in C-SPY. For

each reported error, examine the comments at that location in the code.

2. Comment out the line listsize = __iar_set_delayed_free_size(2); and re-

build and run

3. For more in-depth information, read the section Detecting heap memory

leaks and Detecting heap integrity violations in the C-SPY Debugging

Guide.

12

Questions?

www.iar.com/contact

Request a quote

for a standard license

www.iar.com/buy

http://www.iar.com/contact
http://www.iar.com/buy

